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Abstract. We present a new approach for the simulation of beyond standard model (BSM) physics within
the Herwig++ event generator. Our approach is more generic than previous methods with the aim of min-
imising the effort of implementing further new physics models. Spin correlations, which are important for
BSM models due to new heavy fermions and bosons, are discussed and their effects demonstrated for the
minimal supersymmetric standard model (MSSM) and Randall–Sundrum model using our new framework.

1 Introduction

In the arena of modern particle physics Monte Carlo
event generators have become essential tools for analys-
ing experimental data. They are necessary in order to
compare the behaviour of theoretical predictions under
the conditions present within a collider experiment by
giving a realistic description of the final state particles
that interact with the detector including any experimen-
tal cuts. It is essential that these generators reproduce
standard model physics as accurately as possible, since
these processes will provide a background to any new
physics signals that might be present at future colliders as
well as being of interest in their own right. New physics
models will also need to be incorporated into a Monte
Carlo simulation in order for their implications to be fully
understood.
There are a wide variety of new physics models and

while one could implement eachmodel independently in its
own event generator it is more efficient to have a general
purpose event generator that can handle a variety of these
models but can also offer the full event simulation frame-
work, i.e. hard process, decay, parton shower and hadroni-
sation. This is the approach that will be described in this
paper using the Herwig++ [1, 2] event generator.
Herwig++ is a new event generator, written in C++,

based on the well tested HERWIG [3–5] program. It is
not simply a translation of the old FORTRAN code into
C++; it includes significant improvements to both the
physics models and the simulation framework. The object
oriented aspect of the C++ language will allow future ad-
ditions and modifications to be incorporated more easily.
One area where improvements are needed is in the simu-
lation of beyond standard model (BSM) physics. In the
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past each model was hard coded in the generator making
the addition of new models a time consuming process. We
wish to minimise the effort required in order to add new
physics models to Herwig++. Our approach is to factorise
the problem into smaller pieces and reuse as much informa-
tion that has already been calculated as possible.
For example, in gluino production our method would

first calculate the 2→ 2 production matrix element and
then choose a decay mode for the gluino based on the
branching ratios and generate the decay products. In add-
ition, since the gluino is a coloured object, there will be
QCD radiation, which is simulated more easily in our fac-
torised approach, as it is simply another step between the
production and decay of the particle. While factorising
the problem in this manner makes many things easier, it
does introduce complications when considering spin cor-
relations. Additional information must be passed between
each step to ensure that the final decay products are cor-
rectly distributed including correlations between the pro-
duction and various decays.
Other packages, such as MadGraph [6], CompHEP [7],

Sherpa [8] and Omega [9] with WHiZard [10] exist, which
are capable of producing a wide class of BSM physics
processes1 but they have limitations. The main problem
is the efficiency with which the variety of possible pro-
cesses can be generated. The above programs all treat the
processes as 2→ n scattering which requires the exact pro-
duction and decay chain to be specified from the beginning.
While this does mean that effects such as spin correlations
are included automatically, it limits the number of pro-
cesses that can be generated in a reasonable amount of
time. For example, in order to study two different decay
modes of the gluino, with the above generators, one would
have to calculate the production step twice, whereas our

1 A general list of programs for BSM physics can be found at
http://www.ippp.dur.ac.uk/montecarlo/BSM/
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method would simply be able to pick another decay mode
without recalculating the hard subprocess.
To minimise the amount of work needed for every new

model, our approach will require only a set of Feynman
rules, the specification of any new non-standardmodel par-
ticles and their properties. In addition there is a mechan-
ism to read in parameters from a Les Houches [11]2 file for
a supersymmetric (SUSY) model. The new physics models
currently implemented are the minimal supersymmetric
standard model (MSSM) with CP , R-parity and flavour
conservation and a Randall–Sundrum [12] type model with
the lowest Kaluza–Klein excitation coupling to standard
model matter.
Section 2 introduces how spin correlations are dealt

with, since these will be important when dealing with
heavy fermions and vector bosons. Some details on the
technical structure of the code will be given in Sect. 3 along
with some physics of the models implemented thus far.
A comparison with the FORTRAN code for some physi-
cal distributions will be presented in Sect. 4 to demonstrate
the consistency of our approach.

2 Spin correlations

Many new physics models predict the existence of new par-
ticles that are as yet undetected by experiment. Heavy
spin- 12 , spin-1 and spin-2 particles will be produced, which
will decay to lighter states. Their non-zero spin gives corre-
lations between the production and decay steps that must
be taken into account in order for the final state angular
distributions to be correct. An algorithm for dealing with
these correlations is demonstrated in [13–15]. It will briefly
be described below for the process e+e−→ tt̄, where the
top quark subsequently decays, via aW boson, to a b quark
and a pair of light fermions.
Initially the outgoingmomenta are generated according

to the usual cross-section integral,

(2π)4

2s

∫
d3pt

(2π)32Et

d3pt̄
(2π)32Et̄

Me+e−→tt̄
λtλt̄

M∗e+e−→tt̄
λtλt̄

,

(1)

whereMe+e−→tt̄
λtλt̄

is the matrix element for the initial hard

process and λt,t̄ are the helicity of the t and t̄, respectively.
One of the outgoing particles is then picked at random, say
the top, and a spin density matrix calculated
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with N defined such that Trρ= 1.
The top is decayed and the momenta of the decay prod-

ucts distributed according to
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2 Currently only SLHA1 is supported.

where the inclusion of the spin density matrix ensures the
correct correlation between the top decay products and the
beam.
A spin density matrix for theW+ is calculated because

the b is stable,
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, (4)

and theW decayed in the same manner as the top with the
inclusion of the spin density matrix, here ensuring the cor-
rect correlations between theW decay products, the beam
and the bottom quark.
The decay products of theW are stable fermions so the

decay chain terminates here and a decay matrix for theW ,
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is calculated. Moving back up the chain, a decay matrix
for the top quark is calculated using the decay matrix of
theW ,
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Since the top came from the hard subprocess we must now
deal with the t̄ in a similar manner, but instead of using
δλiλi when calculating the initial spin density matrix, the
decay matrix of the top is used and the t̄ decay is generated
accordingly. The density matrices pass information from
one decay chain to the associated chain, thereby preserving
the correct correlations.
The production and decay of the top, using the spin cor-

relation algorithm, is demonstrated in Figs. 1–3. The hard
subprocess and subsequent decays were generated using
our new method. The results from the full matrix element
calculation are also included to show that the algorithm
has been correctly implemented. The separate plots illus-
trate the different stages of the algorithm at work. Figure 1
gives the angle between the beam and the outgoing lep-
ton. The results from the simulation agree well with the full
matrix element calculation, which demonstrates the con-
sistency of the algorithm for the decay of the t̄.
Figure 2 gives the angle between the top quark and

the produced lepton. This shows the same agreement as
the previous figure and demonstrates the correct imple-
mentation of the spin density matrix for the t̄ decay. Fi-
nally, Fig. 3 gives the results for the angle between the
final state lepton/antilepton pair showing the correct im-
plementation of the decay matrix that encodes the infor-
mation about the t̄ decay. Again there is good agreement
between our numerical results and the full matrix element
calculation giving us confidence about the implementation
of the spin correlation algorithm.
The above procedure is well suited for implementation

in an event generator, as demonstrated, where one would
like additional processes to occur between the hard pro-
duction and decay such as showering of a coloured particle.
The algorithm as presented here is implemented in Her-
wig++ and will be used extensively during the simulation
of many BSM physics models.
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Fig. 1. Angle between the beam and the outgoing lepton in e+e−→ tt̄→ bb̄l+νll
−ν̄l in the lab frame for a centre-of-mass en-

ergy of 500 GeV with a unpolarised incoming beams, b negatively polarised electrons and positively polarised positrons and
c positively polarised electrons and negatively polarised electrons

Fig. 2. Angle between the lepton and the top quark in e+e−→ tt̄→ bb̄l+νll
−ν̄l in the lab frame for a centre-of-mass energy of

500 GeV with a unpolarised incoming beams, b negatively polarised electrons and positively polarised positrons and c positively
polarised electrons and negatively polarised electrons

3 Technical details

Instead of following the paradigm of implementing a spe-
cific model we have chosen a more generic approach to
the problem, which is intended to be as model indepen-
dent as possible. This will allow a wider variety of models
to be implemented within the event generator framework.

The structure of the code relies heavily on the inheritance
facilities available in the C++ language which allow inde-
pendent structures to have a common heritage.
Due to the existing structure it was sufficient only

to consider generation of the hard subprocess and de-
cay of the subsequent unstable particles since the shower-
ing and hadronising are handled (almost) independently
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Fig. 3. Angle between the outgoing lepton and anti-lepton in e+e−→ tt̄→ bb̄l+νll
−ν̄l in the lab frame for a centre-of-mass

energy of 500 GeV with a unpolarised incoming beams, b negatively polarised electrons and positively polarised positrons and
c positively polarised electrons and negatively polarised electrons

of the model details. Both the hard process and decay
require knowledge of the Feynman rules, couplings and
masses within the model, and these are currently imple-
mented for the MSSM and Randall–Sundrum model.
In Herwig++ the Feynman rules are encoded in Ver-

tex classes. They form part of the structure that enables
the calculation of matrix elements using the HELAS for-
malism [16]. These classes provide the couplings to the
particles defined within the model, and so they must be
provided with every new model that is implemented. The
way in which the vertices have been set up minimises this
effort and will be described in the next section.

3.1 Vertices

For a given combination of spins interacting at a vertex, if
we assume the perturbative form of the interaction, there
is a specific Lorentz structure and a limit on the number of
possible couplings for any given interaction. This is carried
into the implementation of the vertices by defining a base
class that holds all common functionality and by inheriting
from this class to define a specific spin structure. The spin
structure must then be further specialised into the exact
vertex required by specifying the coupling and the particles
that are able to interact at it.
As an example, consider the χ0iχ

0
j Z
0 vertex in the

MSSM as shown in Fig. 4.
A more general rule than that given in the figure is

icγµ
[
aL

2
(1−γ5)+

aR

2
(1+γ5)

]
, (7)

where c is the overall normalisation and a{L,R} are the
left and right couplings, respectively. We would choose
c= g/ cos θW, a

L = O
′L
ij and a

R = O
′R
ij . The overall coup-

ling c is stored in the base class and the inherited class for
the specific spin stores the left and right couplings, since
they may not always be required. Finally, the actual ver-
tex class implements a function to calculate the value of the
couplings.
In addition to storing the couplings, the spin specific

vertices have functions that can be used to either eval-
uate the vertex as a complex number or return an ap-
propriate off-shell wave function. The ability to calculate
not just the entire vertex but off-shell components under-
lies the HELAS [16] formalism for the calculation of ma-
trix elements. As an example consider decay of the top as
in Sect. 2. TheHELAS approach factorises the problem into
two parts. First a vector wave function for an off-shellW+

is calculated for a specified helicity of the top and bottom

Fig. 4. Feynman rule for the χ0iχ
0
j Z
0 vertex where the O

′

ij are
a combination of neutralino mass matrices
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quarks. This is used as an input, along with the spinors
for the light fermions, at the second vertex to calculate
the final matrix element for that helicity combination. To
obtain the spin-summed matrix element the procedure is
repeated for all possible helicities of the external particles.
This dramatically reduces the amount of code required for
numerical evaluation of the vertices. It also has the addi-
tional benefit of providing basis states3 for the particles
that can be stored and passed between the production and
decay to ensure that the spin correlations are consistently
implemented. Our implementation and the formulation are
described in more detail in Appendix A.

3.2 Decayers

The decay of the top described in Sect. 2 is handled by
a class that is solely responsible for this decay. When just
considering the standard model this is reasonable, since
the top is the only heavy fermion4 present. However, in
the case of new physics models there will be a wealth of
heavy particles that decay, and creating a class for each
decay would be inefficient. Instead we have implemented
a set of classes for each set of possible external spin states
and each of these classes, called decayers, is responsible for
a specific external spin configuration in a decay. At the
present time only two-body decays have been considered.5

Appendix C contains a list of the currently implemented
decayer classes.
The standard way in which Herwig++ handles particle

decay modes is with a text file listing each mode, along
with branching ratios and the object that will handle the
decay. We have instead taken the approach of construct-
ing the decay modes and decayer objects automatically. All
that is left to the user is to specify the particle(s) that will
be decayed. The steps for creating the decay modes and
decayer objects are

1. specify the particles for which decay modes are re-
quired;

2. analyse each vertex to find whether the particle can in-
teract; if it cannot, skip to the next vertex in the list
until one is found that is able to;

3. find the decay products and test whether the decay
would be kinematically possible; if not, skip to the next
possible mode;

4. if an object already exists that can handle the decay,
then assign it to handle the mode, else create a new de-
cayer and assign this to handle the decay.

The created decayer object contains the appropriate code
for calculating the matrix element for all possible helicity
combinations that can be used in the spin correlation algo-
rithm from Sect. 2.

3 In this case the spinors for the quarks and light fermions.
4 Heavy in this context means that it decays before it
hadronises.
5 Any three-body decays read from a decay table are handled
with a phase-space decayer and therefore will not include spin
correlation information.

There is an additional point to consider when dealing
with SUSY models. These models contain additional pa-
rameters, such as mixing matrices, that are necessary for
vertex calculations. A mechanism has been implemented
to read this information from a SUSY Les Houches Accord
file [11]. In principle, the file can contain decaymodes along
with branching ratios. If this is the case, then the decay
mode is not created automatically; it is just assigned an
appropriate decayer.
In order to be able to decay the particles we must first

produce them along with their associated momenta. The
next section will describe how this procedure is accom-
plished within the new framework.

3.3 Hard processes

In the hard process the initial momenta of the outgoing
particles from a hard collision are calculated via a leading-
order matrix element as in (1). There will be additional
PDFs involved if the incoming particles are composite. In
Herwig++ the mechanism for this is again “factorised”
into pieces concerned with the phase-space evaluation and
pieces concerned with the calculation of |M|2. Here we
only concern ourselves with the 2→ 2 cross sections and
as a result the existing structure only requires us to imple-
ment calculations of |M|2 for the new processes.
Figure 5 shows the possible topologies for a 2→ 2 pro-

cess at tree level. Obviously some processes will not in-
volve all topologies. As in the case for the decayers our
approach is not to create a class for each possible process,
but instead create classes based on the external spins of the
particles involved. The user simply specifies the incoming
states and an outgoing particle; all of the possible diagrams
with this outgoing particle are then created along with the
appropriate MatrixElement object. The object is respon-
sible for calculating the spin-averaged matrix element. In
the HELAS approach the matrix element is first calculated
by computing the complex amplitude for each diagram of

Fig. 5. Tree-level topologies for a 2→ 2 process. The arrows
denote the flow of momenta
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Fig. 6. Diagrams contributing to the process gg→ g̃g̃ where
lowered Greek letters denote space-time indices and raised Ro-
man letters denote colour indices in the adjoint representation.
u and v are the spinors for the gluinos and εµ,ν are the polarisa-
tion vectors of the gluons. The momenta (p1, p2) are incoming
and (p3, p4) are outgoing

a given helicity combination. The diagram contributions
are then summed and the modulus squared is taken. This
is done for each helicity, and the sum of each helicity gives
the spin-summed |M|2. In the case of strong processes it
is easier to separate the colour structure from the evalua-
tion of the matrix element. In a given process the diagrams
can be split into “colour flows”, which are a combination
of diagrams with the same colour structure, reducing the
amount of computation required.
To demonstrate this procedure, consider the process

gg→ g̃g̃. The diagrams that contribute are shown in Fig. 6.
If the amplitude, stripped of the colour information, for the
ith diagram is denoted byMi, the full amplitude for the 3
diagrams is given by

g1 = ifaciif bidM1, (8a)

g2 = ifadiif bicM2, (8b)

g3 =−if
aibif icdM3 , (8c)

where gi denotes the full amplitude and f
abc denotes the

antisymmetric structure constants.
The factors of i associated with the structure constants

are present because of the way the vertex rules are defined
within the code. The vertices in Herwig++ are stripped

of their colour information and therefore require the ex-
tra factors of i to be included, where appropriate, with the
colour matrices to give the correct sign.
The combination of structure constants in (8c) can be

rewritten using the Jacobi identity to give

g3 =
(
facif bid−f bcifaid

)
M3 , (9)

making it apparent that the colour structure of the s-
channel gluon exchange diagram is simply a combination of
the other two colour structures. The full colour amplitude
can therefore be written as

MT =− [c1(M1−M3)+ c2(M2+M3)] , (10)

where ci denotes the combination of structure constants
from above, and the combination of diagram amplitudes
will be known as “colour flows”, denoted by fi. Note that
the overall minus sign can be dropped, since it simply cor-
responds to a phase that will not contribute to the final
answer. In order to calculate |M|2, the constants ci need to
be squared. For the process being considered |c1|2 = |c2|2 =
N2c (N

2
c −1) and c1c

∗
2 = c2c

∗
1 = N

2
c (N

2
c −1)/2 where Nc is

the number of colours. The spin-summed matrix element,
averaged over initial colours and polarisations, is then

|M̄|2 =
1

2

1

4

1

(N2c −1)
2

∑
λ

Cijf
λ
i f
∗λ
j , (11)

where Cij is a matrix containing the squared colour factors
and fλi is the ith colour flow for the set of helicities λ.
As well as calculating |M|2 for a given process each

MatrixElement object is also responsible for setting up the
colour structure of the hard process that is required to
generate the subsequent QCD radiation and hadronisa-
tion. Depending on the colours of the internal and external
states involved, there may be more than one possible colour
structure for each diagram. For the example in Fig. 6 each
diagram has 4 possible colour topologies since the both the
gluon and gluino carry a colour and an anticolour line in
the largeNc limit. When an event is generated, if this case
presents itself, a colour structure is picked at random from
the Nt possibilities. While this does rely on using the large
Nc limit, we believe it to be a good approximation for the
colour structures that we are dealing with.
The possible Majorana nature of external states also

gives rise to complications when calculating the matrix
element. If the incoming states are a spinor and a barred
spinor, then in the case where a u-channel diagram is re-
quired two additional spinors must be calculated. The rea-
son for this is that, using the notation of Fig. 5, when c
and d are crossed their fermion flow can no longer be re-
versed, since the initial fermions set the direction in which
these arrows point. The two additional spinors required are
a spinor for the original outgoing barred state and a barred
spinor for the original outgoing spinor state with care be-
ing taken to associate the new spinors with the correct
helicity.
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Fig. 7. Resonant graviton exchange from gluon fusion to pro-
duce 2 fermions

Appendix B contains a list of the currently imple-
mented MatrixElement classes.6 The example given above
demonstrates a possible SUSY gaugino production process
that is taken into account with our new mechanism. We
have also implemented another mechanism for the simu-
lation of resonances. This will be described now using an
example from the Randall–Sundrum model.

3.4 Resonant processes

Often we are interested in the study of s-channel reso-
nances that decay to standard model particles rather than
the production of a new particle in a 2→ 2 process. We
therefore include a mechanism to study this type of pro-
cess. We will take as an example here the virtual exchange
of a graviton, the lowest lying state of a Kaluza–Klein
tower. The graviton is predicted by various models with
extra dimensions where gravity is allowed to propagate
in the bulk; an example process is shown in Fig. 7. The
same matrix element classes as are used to calculate the
hard processes are used to calculate the resonant processes.
Now, however, there is less computation, since eachMatrix-
Element will contain only a single s-channel diagram and
hence a single colour flow.
The next section will detail some physical distributions

for the two models discussed previously.

4 Results

The following sections will show some distributions pro-
duced using the new BSM code in Herwig++. As there are
currently only two models implemented, these will form
the basis of the distributions considered.

4.1 Graviton resonances

The LHC may give us the possibility of detecting nar-
row graviton resonances at the TeV scale through vari-
ous hard subprocesses. To test our implementation of the
RS model we have picked three processes involving gravi-
ton exchange: gg→G→ e+e−, uū→G→ e+e− and uū→
G→ γγ. The plots of the angular distribution of the out-
going fermion/boson with respect to the beam axis in the

6 This includes all of the spin combinations needed in the
MSSM and RS model. Additional cases will be implemented
when required for a new type of model.

Fig. 8. Angular distributions for fermion and boson produc-
tion through a resonant graviton. The graviton has a mass
of 1 TeV. The black line denotes the analytical result and
the crosses show the simulation data for a gg→ G→ e+e−

b uū→G→ e+e− and c uū→G→ γγ

centre-of-mass frame are shown in Fig. 8. There is good
agreement here with the analytical result from the matrix
element and the numerical simulation indicating the cor-
rect implementation of the graviton Feynman rules and
new matrix elements.
These distributions show the characteristic behaviour

of an exchanged spin-2 particle. The angular dependence
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of an exchanged spin-1 boson on the other hand is no-
tably different, and therefore this kind of distribution is
extremely useful in identifying the two cases and eliminat-
ing possible background spin-1 exchange when searching
for this new mode [17] in future experiments. This kind of
behaviour may be important for the LHC since Randall–
Sundrum type models predict the possibility of narrow
graviton resonances at the TeV-scale [18]. Discovery of the
kind of behaviour shown in Fig. 8 would certainly be a very
strong indication of the existence of some type of extra di-
mensions model.

4.2 Decay of a squark

The spin correlation algorithm discussed in Sect. 2 was
shown to work in the case of tt̄ production and decay. One
of the simplest cases to consider for a SUSY model is the
different decay modes of a left-handed squark. Consider-
ing the decay of the squark via the two modes (a) q̃L→
χ̃02q→ l̃

−
R l
+u and (b) q̃L→ χ̃02q→ l̃

+
R l
−u, and plotting the

mass distribution of the produced quark and (anti-) lepton
allows the effect of spin correlations to be shown.
The plots in Fig. 9 were produced at Snowmass point

5 [19], where tanβ = 5, sign(µ) = +,M0 = 150GeV,M2 =
300GeV and A0 = −1000GeV. This parameter set gives
the following particle spectrum using SOFTSUSY 2.0.8 [20]
MũL = 672.82GeV, Mχ̃02

= 231.29GeV and Ml̃R =
192.87GeV.
There is a stark difference in the quark–leptonmass dis-

tribution for the two decay modes considered above. The
difference is due to the helicities of the external particles.
At the mass scale of the squark the quark can be consid-
ered massless and left-handed, while the produced lepton
and antilepton will be right-handed. When back-to-back

Fig. 9. The invariant
mass distribution of
a the antilepton–quark
and b lepton–quark
produced in ũL→ χ̃

0
2u

→ e±ẽ∓Ru

the lepton–quark system will have net spin 1 and as such
cannot be produced in a scalar decay, while the antilepton–
quark system will have spin 0 and is able to proceed.
The end-point in both of the distributions is due to

a kinematical cut-off where the invariant mass of the
quark–lepton pair is at a maximum. The value of this end-
point can be calculated by considering the mass squared
when the pair is back-to-back. The value is given in [21] as

(m)2max =

(
m2ũl −m

2
χ̃02

)(
m2
χ̃02
−m2ẽR

)

m2
χ̃02

. (12)

Using the values for the sparticles above one finds a value
for the cut-off of 348.72GeV, which is consistent with the
plots in Fig. 9.

4.3 Gaugino production

Supersymmetry predicts the existence of Majorana
fermions and it is necessary to ensure that their spin cor-
relations are implemented correctly in our new framework.
We consider three production processes and the angular
distributions of the leptons produced in the subsequent de-
cays. The SUSY spectrum for each was again generated
using SOFTSUSY, and the masses for the points used in
each process are given in the relevant section.

4.3.1 e+e−→ χ02χ
0
1

Here we consider the production of the lightest and next-
to-lightest neutralinos with the χ02 decaying via the two
modes (i) χ02→ l̃

+
R l
−→ l+l−χ01, (ii) χ

0
2→ Z

0χ01→ l
−l+χ01

at SPS point 1b. The relevant sparticle masses areMχ02
=
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Fig. 10. The angle between the lepton produced in e+e−→ χ02χ
0
1→ l̃

+
R l
− and the beam in the lab frame for a centre-of-mass energy

of 500 GeV and a unpolarised incoming beams, b negatively polarised electrons and positively polarised positrons and c positively
polarised electrons and negatively polarised positrons. The black histogram is fromHERWIG and the crosses are from Herwig++

Fig. 11. The angle between the lepton produced in e+e−→ χ02χ
0
1→ Z

0χ01→ l
−l+χ01 and the beam in the lab frame for a centre-

of-mass energy of 500 GeV and a unpolarised incoming beams, b negatively polarised electrons and positively polarised positrons
and c positively polarised electrons and negatively polarised positrons. The black histogram is from HERWIG and the crosses are
from Herwig++

306.55GeV, Mχ01
= 161.78GeV, Ml̃R = 253.82GeV. Fig-

ure 10 shows how the polarisation of the beam affects the
angular distribution of the lepton produced from the χ02
decay.
The lepton shows a correlation with the beam polarisa-

tion due to the neutralino being a fermion and preserving
spin information when decaying. Figures 11 and 12 show
the angular dependence of the final-state lepton for the
case of an intermediate Z0 boson and l̃R, respectively. As

is to be expected for an intermediate slepton, the incoming

beam polarisation has little effect on the angular distribu-
tion of the final-state lepton due to its scalar nature.7 The
plots are in good agreement with the HERWIG results.

4.3.2 e+e−→ χ+i χ
−
i

We now consider the production of chargino pairs and their
associated decays. Two possible decay modes of the χ±i are

7 There is some residual effect due to the correlation of the l̃R
direction with the beam in the χ02 decay.
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Fig. 12. The angle between the lepton produced in e+e−→ χ02χ
0
1→ l̃

−
R l
+→ l−l+χ01 and the beam in the lab frame for a centre-

of-mass energy of 500 GeV and a unpolarised incoming beams, b negatively polarised electrons and positively polarised positrons
and c positively polarised electrons and negatively polarised positrons. The black histogram is from HERWIG and the crosses are
from Herwig++

Fig. 13. The angle between the lepton produced in e+e−→ χ+1 χ
−
1 →W

+W−χ01χ
0
1→ l

−l+νlν̄l and the beam in the lab frame for
a centre-of-mass energy of 500 GeV and a unpolarised incoming beams, b negatively polarised electrons and positively polarised
positrons and c positively polarised electrons and negatively polarised positrons. The black histogram is from HERWIG and the
crosses are from Herwig++

(a) χ±i →W
±χ01 and (b) χ

±
i → ν̃αl

±. Here we use the W
decay mode for the lightest chargino and the sneutrino de-
cay mode for the heaviest chargino in order to consider fi-
nal states with differing spins. The mass spectrumwas gen-
erated for SPS point 1a, whereM

χ+2
= 377.39GeV,M

χ+1
=

181.53GeV,Mν̃L = 185.42GeV andMχ01
= 97.00GeV.

Figure 13 shows the angle of the produced electron for
the production of the lightest chargino. As is to be ex-

pected the beam polarisation affects the lepton distribu-
tion, because of the intermediate W boson carrying the
spin correlations through to the final state. The effects are
similar in the case of the sneutrino decay of the heaviest
chargino shown in Fig. 14. The lepton accompanied with
the ν̃L still shows correlations with the beam on account of
the chargino being a fermion. If the lepton had come from
the decay of a scalar, then there would have been no such
correlation.
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Fig. 14. The angle between the lepton produced in e+e−→ χ+2 χ
−
2 → ν̃Ll

+ν̃Ll
− and the beam in the lab frame for a centre-of-

mass energy of 1 TeV and a unpolarised incoming beams, b negatively polarised electrons and positively polarised positrons and
c positively polarised electrons and negatively polarised positrons. The black histogram is from HERWIG and the crosses are from
Herwig++

Fig. 15. Energy frac-
tion, z, carried away by
the charged meson in
the one prong τ decay
ρ± → π±π0 for a left-
handed τ̃1 and b right-
handed τ̃1. The black
histogram shows the re-
sults from HERWIG
with the TAUOLA [24]
decay package and the
crosses indicate the Her-
wig++results

4.4 Tau decays

4.4.1 One prong decays

The tau has a number of leptonic and hadronic de-
cay modes. A more detailed analysis of these decays
shows interesting features in the distribution of energy to
the decay products. A typical tau decay involving sev-
eral mesons has the form τ± → (nm±)(qm0)ντ , where
nm± denotes n ≥ 1 charged mesons, i.e. the number of
prongs, and qm0 denotes q ≥ 0 neutral mesons. Here we
will consider the one prong decay τ±→ ρ±ντ → π±π0ντ ,
where the τ is produced from the decay of a τ̃1. Fig-
ure 15 shows our results for the fraction of visible en-
ergy carried away by the charged meson in the two

cases where the τ̃1 is (a) 100% left-handed and (b) 100%
right-handed.
There is a stark difference in the energy distribution

for two possible mixings of the τ̃1 in Fig. 15 due to the
resulting helicity of the decaying ρ. For the case where
the τ̃1 is entirely τ̃L the ρ has a higher probability of be-
ing transversely polarised, from the results of [25], which
favours the equal splitting of energy between the two pi-
ons as confirmed by the first plot. A τ̃1 that is entirely τ̃R,
however, will give rise to mostly longitudinally polarised
ρ mesons that prefer to distribute their energy unequally
and favour a distribution where one meson receives most of
the visible energy from the τ decay. This is again confirmed
in our second plot. The Herwig++ results are plotted to-
gether with those from HERWIG with the TAUOLA decay
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package [24], which is designed specifically for the decay of
polarised τ leptons.

4.4.2 Decay of a squark

The use of the effects described above in the study of
SUSY models has long been recognised. In [23] a mech-
anism for determining the spin properties of particles in-
volved in SUSY cascade decays using τ polarisation was
suggested. The method involves analysing invariant mass
distributions of different particle pairs along the decay
chain q̃α→ qχ02→ τ

±
nearτ̃

∓
1 → τ

∓
farχ

0
1 with the τ decay re-

stricted to τ± → π±ντ . The various normalised invari-
ant mass distributions are shown in Fig. 16 for q̃α = q̃L at
SPS point 1a whereMq̃L = 558.4GeV,Mχ02

= 180.96GeV,

Mτ̃1 = 134.56GeV andMχ01
= 97.00GeV. Since an experi-

ment would be unable to distinguish a near or far τ/π their
distributions are combined. The normalisation is to the
maximum of the invariant mass. Formττ

(
m2ττ
)
max
=
(
m2
χ̃02
−m2τ̃1

)(
1−m2

χ̃01
/m2τ̃1

)
,

Fig. 16. Normalised invariant mass distributions xij =mij/(mij)max for various pairs of decay products along the chain q̃α→
qχ02→ τ

±
nearτ̃

∓
1 → τ

∓
farχ

0
1 where the τ decays via τ → πντ only. The black histogram denotes the results from HERWIG with the

TAUOLA package and the crosses are the results from Herwig++for a ττ , b qτ+, c qτ−, d ππ, e qπ+ and f qπ−

which is equal to (m2ππ)max. In the case of the qτ plots, the
maximum of (

m2q̃L −m
2
χ̃02

)(
1−m2τ̃1/m

2
χ̃02

)
,(

m2q̃L −m
2
χ̃02

)(
1−m2

χ̃02
/m2τ̃1

)
,

is taken, and again this equals (m2qπ)max.
The differences in shape of the charge conjugate plots

in Fig. 16 for the τ and π are due to the different helici-
ties of the τ and π as explained in Sect. 4.2. The kinks in
these distributions show the change from near to far lep-
tons or pions making up the main components of the event.
Invariant mass distributions of this kind serve as a good in-
dication of the spin properties of the particles involved in
cascade decays. This information is important when trying
to confirm an exact model of new physics, since it is pos-
sible for two different BSM models to imitate each other in
certain decays, even though the new particles introduced
into each model have different spin assignments [26].
Again our results are plotted along with those from

HERWIG using the TAUOLA package. There is excellent
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agreement between the two sets of results, and the distribu-
tions follow those of Fig. 3 in [23].

5 Conclusions

We have described a new method for including new physics
models in the Herwig++ event generator that is more gen-
eral than the previous approach. It allows new models
to be implemented with a minimal amount of work. For
the models implemented the results are in good agree-
ment with either analytical answers or those from the
HERWIG event generator. Any new model will automat-
ically have spin correlations included, since the algorithm
demonstrated in Sect. 2 is formulated independently of any
specific model and has been shown to agree with expected
results.
In the future we plan to implement other BSM physics

models in Herwig++, which will enable comparative stud-
ies of the phenomenological consequences of these models
to be carried out in the framework of the same generator.
The current release, 2.0, of Herwig++ [2] does not include
any of the features discussed in this paper; it will, however,
appear in version 2.1 of the event generator.
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Appendix A: Helicity code

In the FORTRAN HERWIG program the helicity ampli-
tudes were calculated using the formalism of Kleiss and
Stirling [27]. However, this meant that

– all the matrix elements had to be calculated in the same
frame;
– it was impossible to interface the correlations in the
parton shower and those in the decay of unstable funda-
mental particles;
– each matrix element had to be separately calculated.

In Herwig++ we choose to use an approach based on the
HELAS formalism for the calculation of matrix elements.
This approach has a number of advantages:

– we can use the spinors and polarisation vectors calcu-
lated when the particle is produced to calculate their
decays in a different frame, after an appropriate Lorentz
transformation, so that each step of the calculation can
be done in the most relevant frame;
– more complicated matrix elements can be calculated
from the basic building blocks rather than coded from
scratch;
– the inclusion of particles other than scalars, spin- 12
fermions and massless spin-1 bosons, which is compli-
cated in the Kleiss and Stirling formalism, is relatively
simple.

The implementation of the HELAS formalism in
Herwig++ is based on two fundamental types of objects,
WaveFunctionBase and VertexBase.
The WaveFunctions contain the momentum and

a pointer to the properties of the particles together with
the basis state for a given particle spin. WaveFunction-
Base stores the momentum of the particle and a pointer
to the ParticleData object for the particle. The inherit-
ing ScalarWaveFunction, SpinorWaveFunction, SpinorBar-
WaveFunction, VectorWaveFunction, RSSpinorWaveFunc-
tion, RSSpinorBarWaveFunction and TensorWaveFunction
classes then contain storage of the wave functions for
spin-0, - 12 , -1, −

3
2 and -2 particles together with methods

to calculate the wave functions for a given helicity state.
The vertex classes contain methods to combine the

wave functions for a specific vertex to give either off-shell
wave functions, which can be used in further calculations,
or the matrix element. The VertexBase class contains stor-
age of the particles that interact at a given vertex. A num-
ber of classes then inherit from this class and implement
the calculation of the matrix element and off-shell wave
functions for a given Lorentz structure of the vertex in
terms of arbitrary couplings, which are calculated by vir-
tual member functions.
This strategy is essentially identical to that adopted in

the original HELAS approach. However, the new structure
has the benefit that the user need only decide which ver-
tex to use with the structure, then supplying the relevant
couplings, whereas these had to be specified by hand when
using the HELAS library.

A.1 Conventions

To numerically evaluate the matrix elements using the
HELAS formalism we need a specific choice of the Dirac
matrices; we currently support two options: the conven-
tional low-energy choice, used in for example [28],

γHABERi =

(
0 σi
−σi 0

)
, γHABER0 =

(
1 0
0 −1

)
,

γHABER5 =

(
0 1
1 0

)
, (A.1)

and the original choice of HELAS, which is more appropri-
ate at high energies,

γHELASi =

(
0 σi
−σi 0

)
, γHELAS0 =

(
0 1
1 0

)
,

γHELAS5 =

(
−1 0
0 1

)
. (A.2)

These two representations are related by the transform-
ation

ψHELAS = SψHaber where S =
1
√
2

(
1 −1
1 1

)
.

(A.3)

A number of container classes are implemented in the
ThePEG framework [29], on which Herwig++ is built, to
store the basis states for the different spins:
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– LorentzSpinor: storage of the spinor, u or v, for a spin- 12
fermion;
– LorentzSpinorBar: storage of the barred spinor, ū or v̄,
for a spin- 12 fermion;
– LorentzPolarizationVector: storage of the polarisation
vector, εµ, for a spin-1 boson;
– LorentzRSSpinor: storage of the spinor, uµ or vµ, for
a spin- 32 fermion;
– LorentzRSSpinorBar: storage of the barred spinor, ūµ or
v̄µ, for a spin- 32 fermion;
– LorentzTensor: storage of the polarisation tensor, εµν ,
for a spin-2 boson.

In addition to providing storage of the basis state these
classes implement the Lorentz transformations, both boosts
and rotations, for the objects. In the case of fermions the
Dirac basis used to calculate the spinor, together with
whether the spinor is u or v type is also stored. Methods
to convert between the two supported Dirac matrix defi-
nitions are implemented together with the transformation
between u and v spinors for Majorana particles.

A.2 Lorentz transformations

In addition to the storage of the basis states, we need to be
able to transform them between different Lorentz frames.
The Lorentz transformation for a spinor is given by

ψ′(x′) = ψ′(ax) = S(a)ψ(x) , (A.4)

where aνµ =
∂x′ν

∂xµ . For a Lorentz boost along the direction

specified by the unit vector n̂ with a magnitude β the
transformation is given by

Sboost = cosh
(χ
2

)
+sinh

(χ
2

)
n̂iγ

0γi , (A.5)

where tanhχ= β. For a rotation by an angle φ about the
unit vector n̂ the Lorentz transformation is given by

Srotation = cos

(
φ

2

)
+sin

(
φ

2

)
εijkn̂kγ

iγj . (A.6)

The Lorentz transformations for a four vector is given by

εµ(x′) = L(a)µνε
ν(x) . (A.7)

If we wish to boost by a factor β along a unit vector n̂ the
transformation is

Lµν =

⎛
⎜⎝

γ −γβn̂1 −γβn̂2 −γβn̂3
−γβn̂11− n̂1n̂1ω − n̂1n̂2ω − n̂1n̂3ω
−γβn̂2 − n̂2n̂1ω1− n̂2n̂2ω − n̂2n̂3ω
−γβn̂3 − n̂3n̂1ω − n̂3n̂2ω1− n̂3n̂3ω

⎞
⎟⎠ ,

(A.8)

where ω = 1− γ and γ = 1√
1−β2

. The Lorentz transform-

ation for a rotation by an angle δ about a unit vector n̂ is

Lµν =

⎛
⎜⎝
1 0 0 0
0 λn̂1n̂1+ cδ λn̂1n̂2− sδn̂3λn̂1n̂3+ sδn̂2
0λn̂2n̂1+ sδn̂3 λn̂2n̂2+ cδ λn̂2n̂3− sδn̂1
0λn̂3n̂1− sδn̂2λn̂3n̂2+ sδn̂1 λn̂3n̂3+ cδ

⎞
⎟⎠ ,

(A.9)

where cδ = cos δ, sδ = sin δ and λ = 1− cos δ. The trans-
formations for the higher-spin particles can then be con-
structed as products of the spin- 12 and spin-1 transform-
ations, i.e.

ψµ(x′) = L(a)µνS(a)ψ
ν(x), (A.10a)

εµν(x′) = L(a)µαL(a)
ν
βε
αβ . (A.10b)

A.3 WaveFunctions

A.3.1 ScalarWaveFunction

The ScalarWaveFunction class inherits from theWaveFunc-
tionBase class and implements the storage of the wave func-
tion of a scalar particle as a complex number. For external
particles this is just 1; however, it can assume different
values when the WaveFunction is the result is an off-shell
internal line from a Vertex class.

A.3.2 SpinorWaveFunction and SpinorBarWaveFunction

As with the ScalarWaveFunction, the SpinorWaveFunc-
tion and SpinorBarWaveFunction classes inherit from the
WaveFunctionBase class. The spinor is stored as either
a LorentzSpinor or LorentzSpinorBar. In addition the calcu-
lation of the spinors for external particles is implemented.
The spinors are calculated in terms of two-component
spinors, as in [16],

χ+(p) =
1√

2|p| (|p|+pz)

(
|p|+pz
px+ ipy

)
, (A.11a)

χ−(p) =
1√

2|p| (|p|+pz)

(
−px+ ipy
|p|+pz

)
,

(A.11b)

where px,y,z are the x, y and z components of the momen-
tum, respectively, E is the energy of the particle and |p|
is the magnitude of the three momentum. For the HELAS
choice of the Dirac representation the spinors are given by

u(p) =

(
ω−λ(p)χλ(p)
ωλ(p)χλ(p)

)
, (A.12a)

v(p) =

(
−λωλ(p)χ−λ(p)
λω−λ(p)χ−λ(p)

)
, (A.12b)

where ω±(p) =
√
E±|p| and the helicity λ=±1. Similarly

for the low-energy definition

u(p) =

(
ω+(p)χλ(p)
λω−(p)χλ(p)

)
, (A.13a)

v(p) =

(
ω−(p)χ−λ(p)
−λω+(p)χ−λ(p)

)
. (A.13b)
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A.3.3 VectorWaveFunction

The VectorWaveFunction class inherits from theWaveFunc-
tionBase class and implements the storage of the polarisa-
tion vector using the LorentzPolarizationVector class. The
polarisation vectors of a spin-1 particle can be calculated
using, as in [16],

εµ1 (p) =
1

|p|pT

(
0, pxpz, pypz,−p

2
T

)
, (A.14a)

εµ2 (p) =
1

pT
(0,−py, px, 0) , (A.14b)

εµ3 (p) =
E

m|p|

(
|p|2

E
, px, py, pz

)
, (A.14c)

where m is the mass and pT =
√
p2x+p

2
y. We include two

choices of the polarisation vectors:

εµ(p, λ=±1) =
1
√
2
(∓εµ1 (p)− iε

µ
2 (p)) , (A.15a)

εµ(p, λ= 0) = εµ3 (p) , (A.15b)

which is the choice used in HELAS. However, while this
option is available in the Herwig++ by default we include
the additional phase factor exp(iλφ) as in [28] in order to
make the inclusion of spin correlations in the parton shower
easier.

A.3.4 RSSpinorWaveFunction and
RSSpinorBarWaveFunction

Although there are currently no fundamental spin-32 par-
ticles included in Herwig++ the Rarita–Schwinger spinors
for spin- 32 particles are included both to allow for the
simulation of spin- 32 hadronic resonances and for the pos-
sible future inclusion of the gravitino. The RSSpinorWave-
Function and RSSpinorBarWaveFunction inherit from the
WaveFunctionBase class and implement the storage of the
Rarita–Schwinger spinors using the LorentzRSSpinor and
LorentzRSSpinorBar classes, respectively.
The spinors are calculated using the Clebsch–Gordon

decomposition:

ψµ(p, λ=−2) = εµ(p,−1)ψ(p,−1) ; (A.16a)

ψµ(p, λ=−1) =

√
1

3
εµ(p,−1)ψ(p, 1) (A.16b)

+

√
2

3
εµ(p, 0)ψ(p,−1) ; (A.16c)

ψµ(p, λ= 1) =

√
1

3
εµ(p, 1)ψ(p,−1) (A.16d)

+

√
2

3
εµ(p, 0) ; (A.16e)

ψµ(p, λ= 2) = εµ(p, 1)ψ(p, 1) . (A.16f)

For massive particles the spinors are calculated in the rest
frame of the particle and then boosted to the required

frame in order that the Clebsch–Gordon decomposition
can be easily applied. For massless spin- 32 particles, which
only have the ±2 helicity states, the spinors are calculated
in the same frame as the momentum.

A.3.5 TensorWaveFunction

TheTensorWaveFunction class inherits from theWaveFunc-
tionBase class and implements the storage of the polari-
sation tensor for spin-2 particles using the LorentzTensor
class.
The wave function is calculated using the Clebsch–

Gordon decomposition:

εµν(p, λ=−2) = εµ(p,−1)εν(p,−1) ; (A.17a)

εµν(p, λ=−1) =

√
1

2
[εµ(p,−1)εν(p, 0) (A.17b)

+ εµ(p, 0)εν(p,−1)] ; (A.17c)

εµν(p, λ= 0) =

√
1

2
[εµ(p, 1)εν(p,−1)+ εµ(p,−1)εν(p, 1)

+2εµ(p, 0)εν(p, 0)] ; (A.17d)

εµν(p, λ= 1) =

√
1

2
[εµ(p, 1)εν(p, 0) (A.17e)

+εµ(p, 0)εν(p, 1)] ; (A.17f)

εµν(p, λ= 2) = εµ(p, 1)εν(p, 1) . (A.17g)

Here this is applied in the frame in which the momentum is
specified.

A.4 Vertices

The Vertices all inherit from the VertexBase class. In gen-
eral, for all the vertices all the particles and momenta are
defined to be incoming.

A.4.1 Scalar vertices

There are a number of vertices involving scalar bosons.

FFSVertex The vertex for the coupling of a fermion and
antifermion to a scalar boson is defined to have the per-
turbative form

icf̄2a
λPλf1φ3 , (A.18)

where c is the overall normalisation, aλ are the left/right
couplings, Pλ are the helicity projection operators, f1 is
the wave function for the fermion, f̄2 is the wave func-
tion for the antifermion and φ3 is the wave function for
the scalar boson.

GeneralSVVVertex In addition, to the perturbative form
for the vertex coupling a scalar and two vector bosons
described below we include a general form for this inter-
action, so that effective vertices, for example h0→ gg,
can be implemented. The form of the vertex is

ic [a00g
µν+a22p

µ
2p
ν
2 +a23p

µ
2p
ν
3 +a32p

µ
3p
ν
2 +a33p

µ
3p
ν
3

+aεε
µναβp2αp3β

]
ε2µε3νφ1 , (A.19)
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where p2,3 are the momenta of the vector bosons, ε2,3
are the wave functions of the vector bosons, φ1 is the
wave function of the scalar boson, c is the overall coup-
ling, and aij are the couplings of the different terms.

SSSVertex The vertex for the coupling of three scalar
bosons is defined to have the perturbative form

icφ1φ2φ3 , (A.20)

where φ1,2,3 are the wave functions for the scalar bosons
and c is the coupling.

SSSSVertex The vertex for the coupling of four scalar
bosons is defined to have the perturbative form

icφ1φ2φ3φ4 , (A.21)

where φ1,2,3,4 are the wave functions for the scalar
bosons and c is the coupling.

VSSVertex The vertex for the coupling of a vector boson
and two scalar bosons is defined to have the perturba-
tive form

−ic (p2−p3) · ε1φ2φ3 , (A.22)

where ε1 is the wave function of the vector boson, φ2,3
are the wave functions for the scalar bosons and p2,3 are
the momenta of the scalar bosons, and c is the coupling.

VVSSVertex The vertex for the interaction of two vector
and two scalar bosons is defined to have the perturba-
tive form

icgµνε1µε2νφ3φ4 , (A.23)

where ε1,2 are the wave functions of the vector bosons
and φ3,4 are the wave functions for the scalar bosons
and c is the coupling.

VVSVertex The vertex for the interaction of two vector
bosons and a scalar boson is defined to have the pertur-
bative form

icgµνε1µε2νφ3 , (A.24)

where ε1,2 are the wave functions of the vector bosons
and φ3 is the wave function for the scalar boson, and c
is the coupling.

A.4.2 Vector vertices

There are a number of vertices involving vector bosons.

FFVVertex The interaction of a fermion, antifermion and
a vector boson is taken to have the perturbative form

icf̄2γ
µaλPλf1ε3µ , (A.25)

where c is the overall normalisation, aλ are the left/right
couplings, f1 is the wave function for the fermion, f̄2
is the wave function for the antifermion, and ε3 is the
wave function for the vector boson.

VVVVertex The interaction of three vector bosons is
taken to have the perturbative form

ig
[
(p1−p2)

γgαβ+(p2−p3)
αgβγ

+(p3−p1)
βgαγ

]
ε1αε2βε3γ , (A.26)

where ε1,2,3 are the wave functions of the vector bosons
and p1,2,3 are the momenta of the vector bosons.

VVVVVertex The interaction of four vector bosons is
taken to have the form

ic2 [2ε1 · ε2ε3 · ε4− ε1 · ε3ε2 · ε4− ε1 · ε4ε2 · ε3] ,
(A.27)

where ε1,2,3,4 are the wave functions of the vector
bosons, and p1,2,3,4 are the momenta of the vector
bosons. For the quartic gluon vertex this is the con-
tribution of one colour structure. The others can be
obtained by an appropriate reordering of the input
wave functions.

A.4.3 Tensor vertices

There are a number of vertices involving spin-2 particles.
The form of the Feynman rules follows that of [22].

FFTVertex The interaction of a pair of fermions with
a tensor is taken to have the perturbative form

−
iκ

8
f̄2 [γµ(p1−p2)ν +γν(p1−p2)µ

−2gµν(p� 1−p� 2)+4gµνmf ] f1ε
µν
3 , (A.28)

where κ is the defined as 2/Λcut-off, p1,2 are the mo-
menta of the fermions, f1 is the fermion wave function,
f̄2 is the antifermion wave function and ε

µν
3 is the polar-

isation tensor for the spin-2 particle.
VVVTVertex The interaction of three vector bosons with
a tensor is taken to have the perturbative form

g
κ

2
[Cµν,ρσ(p1−p2)λ+Cµν,ρλ(p3−p1)σ

+Cµν,σλ(p2−p3)ρ+Fµν,ρσλ] ε
ρ
1ε
σ
2ε
λ
3ε
µν
4 ,
(A.29)

where κ is 2/Λcut-off, p1,2,3 are the momenta of the vec-
tor bosons, εµ1,2,3 are the polarisation vectors, and ε

µν
4

is the polarisation tensor. The C and F symbols are de-
fined as

Cµν,ρσ = gµρgνσ+ gµσgνρ− gµνgρσ, (A.30)

Fµν,ρσλ = gµρgσλ(p2−p3)ν + gµσgρλ(p3−p1)ν
+ gµλgρσ(p1−p2)ν +(µ↔ ν) . (A.31)

VVTVertex The interaction of two vector bosons with
a tensor is taken to have the perturbative form

−
iκ

2

[
(m2v+p1 ·p2)Cµν,ρσ+Dµν,ρσ

]
ερ1ε

σ
2ε
µν
3 ,

(A.32)
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where κ is the defined as 2/Λcut-off,mv is the mass of the
gauge boson, p1,2 are the momenta of the vector bosons,
εµ1,2,3 are the polarisation vectors, and ε

µν
3 is the polari-

sation tensor. The C symbol is defined as above, andD
is defined as

Dµν,ρσ = gµνk1σk2ρ− [gµσk1νk2ρ+ gµρk1σk2ν
−gρσk1µk2ν +(µ↔ ν)] .

(A.33)

FFVTVertex The interaction of a pair of fermions with
a vector boson and a tensor is taken to have the pertur-
bative form

igκ

4
f̄2(Cµν,ρσ− gµνgρσ)γ

σf1ε
ρ
3ε
µν
4 , (A.34)

where κ is the defined as 2/Λcut-off, ε
ρ
3 is the polarisation

vector for the boson, f1 is the fermion wave function,
f̄2 is the antifermion wave function, and ε

µν
4 the polar-

isation tensor for the spin-2 particle. The C symbol is
defined above.

SSTVertex The interaction of a pair of scalars with a ten-
sor is taken to have the perturbative form

−
iκ

2

[
m2Sgµν −p1µp2ν−p1νp2µ+ gµνp1 ·p2

]
εµν3 φ1φ2 ,

(A.35)

Table 1. The MatrixElement classes

Class name Process type

MEff2ff ΨΨ
′

→ Ψ
′′

Ψ
′′′

MEff2ss ΨΨ
′

→ φφ
′

MEff2vv ΨΨ
′

→ V V
′

MEfv2fs ΨV → Ψφ

MEvv2ss V V
′

→ φφ
′

MEvv2ff V V
′

→ ΨΨ
′

MEfv2vf ΨV → V
′

Ψ
′

MEvv2vv V V
′

→ V
′′

V
′′′

Table 2. The two-body decayer classes

Class name Decay type

FFSDecayer Ψ→Ψ
′

φ

FFVDecayer Ψ→Ψ
′

V

SFFDecayer φ→ΨΨ
′

SVVDecayer φ→V V
′

SSSDecayer φ→φ
′

φ
′′

SSVDecayer φ→φV

TFFDecayer T→ΨΨ
′

TSSDecayer T→φφ
′

TVVDecayer T→V V
′

VFFDecayer V →ΨΨ
′

VSSDecayer V →φφ
′

VVVDecayer V →V
′

V
′′

where κ is the defined as 2/Λcut-off, Λcut-off is the ultra-
violet cut-off scale,mS is the mass of the scalar, p1,2 are
the momenta of the scalars, εµν3 is the polarisation ten-
sor for the spin-2 particle, and φ1,2 are the scalar wave
functions.

Appendix B: MatrixElement classes

Table 1 gives a list of the implemented 2→ 2MatrixElement
classes with a description of the types of hard subprocess
they can handle. Ψ stands for a fermion, V for a vector bo-
son and φ for a scalar. Charge conjugate modes are handled
by the class responsible for the standard mode.

Appendix C: Decayer classes

Table 2 is a list of the implemented two-body decayer
classes with a description of the types of decay that they
are designed to handle. Ψ stands for a fermion, V for a vec-
tor boson, φ for a scalar and T for a tensor. Charge con-
jugate modes are handled by the class responsible for the
standard decay mode.

Fig. 17. Feynman rule for the interaction of a gauge boson
with a pair of sfermions. The definition of Γ for the various
types of gauge boson and sfermion is given in Table 3. The mo-
menta are to be taken as in the direction of the arrows

Fig. 18. Feynman rule for the interaction of a gauge boson and
a pair of gauginos. The couplings are defined in Table 4

Fig. 19. Feynman rule of the coupling of the neutralinos and
gluino with a standard model fermion and an sfermion. Table 5
gives the definitions of aL and aR
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Fig. 20. Feynman rule of the coupling of a chargino with
a standard model fermion and an sfermion. C is the charge con-
jugation matrix. Table 6 gives the definitions of aL
and aR

Fig. 21. Feynman rule
for the coupling of two
gluons to a pair of
squarks

Appendix D: Implemented vertices

Below is a list of vertices and associated Feynman rules, for
BSM physics, as they are currently implemented. The rules
involving colour are written with the colour dependence
explicitly pulled to the front , since this is not included in
the code for a specific vertex as explained in Sect. 3.3. If
a structure constant fabc is involved, an additional factor
of i is pulled out along with it due to the commutator rela-
tion
[
ta, tb

]
= ifabctc.

D.1 RSModel

The Feynman rules as implemented in Herwig++ are given
in Appendix A.4.3.

Table 4. Feynman rules for the coupling of a gauge boson to a pair of electroweak
gauginos. All momenta are to be taken as outgoing

V µ f̃ f̃
′

c aL aR

γ χ̃+i χ̃
−
j −e 1 1

W+ χ̃0i χ̃
+
j g − 1√

2
Ni4V

∗
j2+Ni2V

∗
j1

1√
2
N∗i3Uj2+N

∗
i2Uj1

Z0 χ̃0i χ̃
0
j

g
cos θW

− 12Ni3N
∗
j3+

1
2Ni4N

∗
j4 −a∗L

Z0 χ̃−i χ̃
+
j

g
cos θW

−Vi1V
∗
j1−

1
2Vi2V

∗
j2 −U∗i1Uj1−

1
2U
∗
i2Uj2

+δij sin
2 θW +δij sin

2 θW

ga g̃bg̃c {ifabc} gs 1 1

Fig. 22. Feynman rule for the coupling of a Higgs particle with
a pair of sfermions. The definition of Γ for the three neutral
Higgs bosons are given in Tables 7–9

Table 3. Couplings for the gauge bosons and sfermions

V µ f̃ f̃
′

c Γ
f̃ f̃
′

αβ

γ q̃q̃
′

−eeq δ
q̃q̃
′

αβ

γ l̃ l̃
′

e δl̃ l̃
′

αβ

g q̃q̃
′

−gta δ
q̃q̃
′

αβ

Z0 ũαũβ
g

cos θW
1
2

(
−Q2i1αQ

2i
1β+2eu sin

2 θWδαβ

)

Z0 d̃αd̃β
g

cos θW
1
2

(
Q2i−11α Q2i−11β +2ed sin

2 θWδαβ

)

Z0 l̃α l̃β
g

cos θW
1
2

(
L2i−11α L2i−11β −2 sin2 θWδαβ

)

Z0 ν̃αν̃β
g

cos θW
− 12δ11

W− q̃αq̃
′

β
−g√
2

Q2i1αQ
2i−1
1β

W− ν̃ l̃β
−g√
2

L2i−11β

D.2 MSSM

We give the Feynman rules for the MSSM as imple-
mented in Herwig++. These are shown in Figs. 17–22. The
sfermion mixing matrices are denoted by Qkαβ and L

k
αβ for

the squarks and leptons, respectively, where k is the gen-
eration number, α the left/right eigenstate and β the mass
eigenstate.Nij , Uij and Vij are the neutralino and chargino
mixing matrices, respectively. The primed matrices in the
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Table 5. Neutralino and gluino couplings. In the case of the gluino k= 2i for up-type quarks and
k = 2i−1 for down-type quarks

fif̃iα c

uiũiα −
√
2 aL :

gmuiN
∗
j4

2MW sinβ
Q2i1α−Q

2i
2α

(
eeuN

′∗
j1−

geu sin
2 θWN

′∗
j2

cos θW

)

aR :
gmuiNj4
2MW sinβ

Q2i2α+Q
2i
1α

(
eeuN

′
j1+

g( 12−eu sin
2 θW)N ′j2

cos θW

)

did̃iα −
√
2 aL :

gmdiN
∗
j3

2MW cosβ
Q2i−11α −Q2i−12α

(
eedN

′∗
j1−

ged sin
2 θWN

′∗
j2

cos θW

)

aR :
gmdiNj3
2MW cosβ

Q2i−12α +Q2i−11α

(
eedN

′
j1−

g( 12+ed sin
2 θW)N ′j2

cos θW

)

lil̃iα −
√
2 aL :

gmliN
∗
j3

2MW cos β
L2i−11α +L2i−12α

(
eN ′

∗
j1−

g sin2 θW
cos θW

N ′
∗
j2

)

aR :
gmliNj3
2MW cosβ

L2i−12α −L2i−11α

(
eN ′j1+

g( 12−sin
2 θW)

cos θW
N ′j2

)

νiν̃i −
√
2 aL : 0 aR :

gN ′j2
2 cos θW

qbi q̃
c
iα {tabc} (−gs

√
2) aL : −Q

k
2α aR : Q

k
1α

Table 6. Chargino couplings for the ith fermion generation

fif̃
′

iα c aL aR

uid̃iα −g −
muiV

∗
j2√

2MW sinβ
Q2i−11α Uj1Q

2i−1
1α −

mdiUj2√
2MW cos β

Q2i−12α

diũiα −g −
mdiU

∗
j2√

2MW cosβ
Q2i1α Vj1Q

2i
1α−

muiVj2√
2MW sinβ

Q2i2α

νi l̃iα −g 0 Uj1L
2i−1
1α −

mliUj2√
2MW cos β

L2i−12α

liν̃iα −g −
mliU

∗
j2√

2MW cos β
Vj1

Table 7. h0 couplings to sfermion pairs with c= ig

f̃iαf̃
∗
iβ Γ

ũiαũ
∗
iβ

MZ sin(α+β)
cos θW

[
Q2i1αQ

2i
1β

(
1
2 − eu sin

2 θW

)
+ eu sin

2 θWQ
2i
2αQ

2i
2β

]

−
m2ui

cosα

MW sinβ

[
Q2i1αQ

2i
1β+Q

2i
2αQ

2i
2β

]

−
mui

2MW sinβ
(Aui cosα+µ sinα)

[
Q2i2αQ

2i
1β+Q

2i
1αQ

2i
2β

]

d̃iαd̃
∗
iβ −MZ sin(α+β)cos θW

[
Q2i−11α Q2i−11β

(
1
2 + ed sin

2 θW

)
− ed sin

2 θWQ
2i−1
2α Q2i−12β

]

+
m2di

sinα

MW cosβ

[
Q2i−11α Q2i−11β +Q2i−12α Q2i−12β

]

+
mdi

2MW cosβ

(
Adi sinα+µ cosα

) [
Q2i−12α Q2i−11β +Q2i−11α Q2i−12β

]

l̃iα l̃
∗
iβ −MZ sin(α+β)cos θW

[
L2i−11α L2i−11β

(
1
2 − sin

2 θW

)
+sin2 θWL

2i−1
2α L2i−12β

]

+
m2li

sinα

MW cos β

[
L2i−11α L2i−11β +L2i−12α L2i−12β

]

+
mli

2MW cosβ
(Aei sinα+µ cosα)

[
L2i−12α L2i−11β +L2i−11α L2i−12β

]

ν̃iαν̃
∗
iβ

MZ sin(α+β)
2 cos θW
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Table 8. H0 couplings to sfermion pairs with c= ig

f̃iαf̃
∗
iβ Γ

ũiαũ
∗
iβ −MZ cos(α+β)cos θW

[
Q2i1αQ

2i
1β

(
1
2 − eu sin

2 θW

)
+ eu sin

2 θWQ
2i
2αQ

2i
2β

]

−
m2ui

sinα

MW sin β

[
Q2i1αQ

2i
1β+Q

2i
2αQ

2i
2β

]

−
mui

2MW sinβ
(Aui sinα−µ cosα)

[
Q2i2αQ

2i
1β+Q

2i
1αQ

2i
2β

]

d̃iαd̃
∗
iβ

MZ cos(α+β)
cos θW

[
Q2i−11α Q2i−11β

(
1
2 + ed sin

2 θW

)
− ed sin

2 θWQ
2i−1
2α Q2i−12β

]

−
m2di

cosα

MW cosβ

[
Q2i−11α Q2i−11β +Q2i−12α Q2i−12β

]

+
mdi

2MW cos β

(
µ sinα−Adi cosα

) [
Q2i−12α Q2i−11β +Q2i−11α Q2i−12β

]

l̃iα l̃
∗
iβ

MZ cos(α+β)
cos θW

[
L2i−11α L2i−11β

(
1
2 − sin

2 θW

)
+sin2 θWL

2i−1
2α L2i−12β

]

−
m2li

cosα

MW cos β

[
L2i−11α L2i−11β +L2i−12α L2i−12β

]

+
mli

2MW cosβ
(µ sinα−Aei cosα)

[
L2i−12α L2i−11β +L2i−11α L2i−12β

]

ν̃iαν̃
∗
iβ −MZ cos(α+β)2 cos θW

Table 9. A0 couplings to sfermion
pairs with c= g

f̃iαf̃
∗
iβ Γ

ũiαũ
∗
iβ

mui
2MW

(Aui cotβ+µ) δα�=β

d̃iαd̃
∗
iβ

mdi
2MW

(
Adi tanβ+µ

)
δα�=β

l̃iα l̃
∗
iβ

mli
2MW

(Aei tan β+µ) δα�=β

neutralino rules are related to the unprimed ones via

N ′i1 =Ni1 cos θW+Ni2 sin θW , (D.1a)

N ′i2 =Ni2 cos θW−Ni1 sin θW , (D.1b)

N ′i3 =Ni3 , (D.1c)

N ′i4 =Ni4 . (D.1d)
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